Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Environ Health Perspect ; 132(2): 26001, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38319881

RESUMO

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) encompass a class of chemically and structurally diverse compounds that are extensively used in industry and detected in the environment. The US Environmental Protection Agency (US EPA) 2021 PFAS Strategic Roadmap describes national research plans to address the challenge of PFAS. OBJECTIVES: Systematic Evidence Map (SEM) methods were used to survey and summarize available epidemiological and mammalian bioassay evidence that could inform human health hazard identification for a set of 345 PFAS that were identified by the US EPA's Center for Computational Toxicology and Exposure (CCTE) for in vitro toxicity and toxicokinetic assay testing and through interagency discussions on PFAS of interest. This work builds from the 2022 evidence map that collated evidence on a separate set of ∼150 PFAS. Like our previous work, this SEM does not include PFAS that are the subject of ongoing or completed assessments at the US EPA. METHODS: SEM methods were used to search, screen, and inventory mammalian bioassay and epidemiological literature from peer-reviewed and gray literature sources using manual review and machine-learning software. For each included study, study design details and health end points examined were summarized in interactive web-based literature inventories. Some included studies also underwent study evaluation and detailed extraction of health end point data. All underlying data is publicly available online as interactive visuals with downloadable metadata. RESULTS: More than 13,000 studies were identified from scientific databases. Screening processes identified 121 mammalian bioassay and 111 epidemiological studies that met screening criteria. Epidemiological evidence (available for 12 PFAS) mostly assessed the reproductive, endocrine, developmental, metabolic, cardiovascular, and immune systems. Mammalian bioassay evidence (available for 30 PFAS) commonly assessed effects in the reproductive, whole-body, nervous, and hepatic systems. Overall, 41 PFAS had evidence across mammalian bioassay and epidemiology data streams (roughly 11% of searched chemicals). DISCUSSION: No epidemiological and/or mammalian bioassay evidence were identified for most of the PFAS included in our search. Results from this SEM, our 2022 SEM on ∼150 PFAS, and other PFAS assessment products from the US EPA are compiled into a comprehensive PFAS dashboard that provides researchers and regulators an overview of the current PFAS human health landscape including data gaps and can serve as a scoping tool to facilitate prioritization of PFAS-related research and/or risk assessment activities. https://doi.org/10.1289/EHP13423.


Assuntos
60418 , Fluorocarbonos , Animais , Estados Unidos , Humanos , United States Environmental Protection Agency , Reprodução , Medição de Risco , Fluorocarbonos/toxicidade , Mamíferos
3.
Environ Int ; 181: 108307, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37948866

RESUMO

BACKGROUND: Personal care products (PCPs) contain many different compounds and are a source of exposure to endocrine disrupting chemicals (EDCs), including phthalates and phenols. Early-life exposure to EDCs commonly found in PCPs has been linked to earlier onset of puberty. OBJECTIVE: To characterize the human and animal evidence on the association between puberty-related outcomes and exposure to PCPs and their chemical constituents and, if there is sufficient evidence, identify groups of chemicals and outcomes to support a systematic review for a class-based hazard or risk assessment. METHODS: We followed the OHAT systematic review framework to characterize the human and animal evidence on the association between puberty-related health outcomes and exposure to PCPs and their chemical constituents. RESULTS: Ninety-eight human and 299 animal studies that evaluated a total of 96 different chemicals were identified and mapped by key concepts including chemical class, data stream, and puberty-related health outcome. Among these studies, phthalates and phenols were the most well-studied chemical classes. Most of the phthalate and phenol studies examined secondary sex characteristics and changes in estradiol and testosterone levels. Studies evaluating PCP use and other chemical classes (e.g., parabens) had less data. CONCLUSIONS: This systematic evidence map identified and mapped the published research evaluating the association between exposure to PCPs and their chemical constituents and puberty-related health outcomes. The resulting interactive visualization allows researchers to make evidence-based decisions on the available research by enabling them to search, sort, and filter the literature base of puberty-related studies by key concepts. This map can be used by researchers and regulators to prioritize and target future research and funding to reduce uncertainties and address data gaps. It also provides information to inform a class-based hazard or risk assessment on the association between phthalate and phenol exposures and puberty-related health outcomes.


Assuntos
Disruptores Endócrinos , Ácidos Ftálicos , Animais , Humanos , Exposição Ambiental , Fenol , Fenóis/toxicidade , Maturidade Sexual
4.
Birth Defects Res ; 115(15): 1345-1397, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37646438

RESUMO

BACKGROUND: The Consortium Linking Academic and Regulatory Insights on Bisphenol A Toxicity (CLARITY-BPA) was a collaborative research effort to better link academic research with governmental guideline studies. This review explores the secondary goal of CLARITY-BPA: to identify endpoints or technologies from CLARITY-BPA and prior/concurrent literature from these laboratories that may enhance the capacity of rodent toxicity studies to detect endocrine disrupting chemicals (EDCs). METHODS: A systematic literature search was conducted with search terms for BPA and the CLARITY-BPA participants. Relevant studies employed a laboratory rodent model and reported results on 1 of the 10 organs/organ systems evaluated in CLARITY-BPA (brain and behavior, cardiac, immune, mammary gland, ovary, penile function, prostate gland and urethra, testis and epididymis, thyroid hormone and metabolism, and uterus). Study design and findings were summarized, and a risk-of-bias assessment was conducted. RESULTS: Several endpoints and methods were identified as potentially helpful to detect effects of EDCs. For example, molecular and quantitative morphological approaches were sensitive in detecting alterations in early postnatal development of the brain, ovary, and mammary glands. Hormone challenge studies mimicking human aging reported increased susceptibility of the prostate to disease following developmental BPA exposure. Statistical analyses for nonmonotonic dose responses, and computational approaches assessing multiple treatment-related outcomes concurrently in linked hormone-sensitive organ systems, reported effects at low BPA doses. CONCLUSIONS: This review provided an opportunity to evaluate the unique insights provided by nontraditional assessments in CLARITY-BPA to identify technologies and endpoints to enhance detection of EDCs in future studies.


Assuntos
Disruptores Endócrinos , Masculino , Feminino , Humanos , Disruptores Endócrinos/toxicidade , Organizações , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade
6.
Environ Res ; 220: 115148, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36580985

RESUMO

Assessing health outcomes associated with exposure to polychlorinated biphenyls (PCBs) is important given their persistent and ubiquitous nature. PCBs are classified as a Group 1 carcinogen, but the full range of potential noncancer health effects from exposure to PCBs has not been systematically summarized and evaluated. We used systematic review methods to identify and screen the literature using combined manual review and machine learning approaches. A protocol was developed that describes the literature search strategy and Populations, Exposures, Comparators, and Outcomes (PECO) criteria used to facilitate subsequent screening and categorization of literature into a systematic evidence map of PCB exposure and noncancer health endpoints across 15 organs/systems. A comprehensive literature search yielded 62,599 records. After electronic prioritization steps, 17,037 studies were manually screened at the title and abstract level. An additional 900 studies identified by experts or supplemental searches were also included. After full-text screening of 3889 references, 1586 studies met the PECO criteria. Relevant study details such as the endpoints assessed, exposure duration, and species were extracted into literature summary tables. This review compiles and organizes the human and mammalian studies from these tables into an evidence map for noncancer health endpoints and PCB mixture exposure to identify areas of robust research as well as areas of uncertainty that would benefit from future investigation. Summary data are available online as interactive visuals with downloadable metadata. Sufficient research is available to inform PCB hazard assessments for most organs/systems, but the amount of data to inform associations with specific endpoints differs. Furthermore, despite many years of research, sparse data exist for inhalation and dermal exposures, which are highly relevant human exposure routes. This evidence map provides a foundation for future systematic reviews and noncancer hazard assessments of PCB mixtures and for strategic planning of research to inform areas of greater uncertainty.


Assuntos
Bifenilos Policlorados , Animais , Humanos , Carcinógenos , Mamíferos , Bifenilos Policlorados/toxicidade , Incerteza
7.
Environ Int ; 169: 107468, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36174483

RESUMO

BACKGROUND: Systematic evidence maps (SEMs) are gaining visibility in environmental health for their utility to serve as problem formulation tools and assist in decision-making, especially for priority setting. SEMs are now routinely prepared as part of the assessment development process for the US Environmental Protection Agency (EPA) Integrated Risk Information System (IRIS) and Provisional Peer Reviewed Toxicity Value (PPRTV) assessments. SEMs can also be prepared to explore the available literature for an individual chemical or groups of chemicals of emerging interest. OBJECTIVES: This document describes the typical methods used to produce SEMs for the IRIS and PPRTV Programs, as well as "fit for purpose" applications using a variety of examples drawn from existing analyses. It is intended to serve as an example base template that can be adapted as needed for the specific SEM. The presented methods include workflows intended to facilitate rapid production. The Populations, Exposures, Comparators and Outcomes (PECO) criteria are typically kept broad to identify mammalian animal bioassay and epidemiological studies that could be informative for human hazard identification. In addition, a variety of supplemental content is tracked, e.g., studies presenting information on in vitro model systems, non-mammalian model systems, exposure-level-only studies in humans, pharmacokinetic models, and absorption, distribution, metabolism, and excretion (ADME). The availability of New Approach Methods (NAMs) evidence is also tracked (e.g., high throughput, transcriptomic, in silico, etc.). Genotoxicity studies may be considered as PECO relevant or supplemental material, depending on the topic and context of the review. Standard systematic review practices (e.g., two independent reviewers per record) and specialized software applications are used to search and screen the literature and may include the use of machine learning software. Mammalian bioassay and epidemiological studies that meet the PECO criteria after full-text review are briefly summarized using structured web-based extraction forms with respect to study design and health system(s) assessed. Extracted data is available in interactive visual formats and can be downloaded in open access formats. Methods for conducting study evaluation are also presented which is conducted on a case-by-case basis, depending on the usage of the SEM.


Assuntos
Saúde Ambiental , Projetos de Pesquisa , Animais , Estudos Epidemiológicos , Humanos , Sistemas de Informação , Mamíferos , Estados Unidos , United States Environmental Protection Agency
8.
Environ Health Perspect ; 130(5): 56001, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35580034

RESUMO

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are a large class of synthetic (man-made) chemicals widely used in consumer products and industrial processes. Thousands of distinct PFAS exist in commerce. The 2019 U.S. Environmental Protection Agency (U.S. EPA) Per- and Polyfluoroalkyl Substances (PFAS) Action Plan outlines a multiprogram national research plan to address the challenge of PFAS. One component of this strategy involves the use of systematic evidence map (SEM) approaches to characterize the evidence base for hundreds of PFAS. OBJECTIVE: SEM methods were used to summarize available epidemiological and animal bioassay evidence for a set of ∼150 PFAS that were prioritized in 2019 by the U.S. EPA's Center for Computational Toxicology and Exposure (CCTE) for in vitro toxicity and toxicokinetic assay testing. METHODS: Systematic review methods were used to identify and screen literature using manual review and machine-learning software. The Populations, Exposures, Comparators, and Outcomes (PECO) criteria were kept broad to identify mammalian animal bioassay and epidemiological studies that could inform human hazard identification. A variety of supplemental content was also tracked, including information on in vitro model systems; exposure measurement-only studies in humans; and absorption, distribution, metabolism, and excretion (ADME). Animal bioassay and epidemiology studies meeting PECO criteria were summarized with respect to study design, and health system(s) were assessed. Because animal bioassay studies with ≥21-d exposure duration (or reproductive/developmental study design) were most useful to CCTE analyses, these studies underwent study evaluation and detailed data extraction. All data extraction is publicly available online as interactive visuals with downloadable metadata. RESULTS: More than 40,000 studies were identified from scientific databases. Screening processes identified 44 animal and 148 epidemiology studies from the peer-reviewed literature and 95 animal and 50 epidemiology studies from gray literature that met PECO criteria. Epidemiological evidence (available for 15 PFAS) mostly assessed the reproductive, endocrine, developmental, metabolic, cardiovascular, and immune systems. Animal evidence (available for 40 PFAS) commonly assessed effects in the reproductive, developmental, urinary, immunological, and hepatic systems. Overall, 45 PFAS had evidence across animal and epidemiology data streams. DISCUSSION: Many of the ∼150 PFAS were data poor. Epidemiological and animal evidence were lacking for most of the PFAS included in our search. By disseminating this information, we hope to facilitate additional assessment work by providing the initial scoping literature survey and identifying key research needs. Future research on data-poor PFAS will help support a more complete understanding of the potential health effects from PFAS exposures. https://doi.org/10.1289/EHP10343.


Assuntos
Fluorocarbonos , Animais , Bases de Dados Factuais , Estudos Epidemiológicos , Fluorocarbonos/análise , Humanos , Mamíferos , Reprodução , Estados Unidos , United States Environmental Protection Agency
9.
Crit Rev Toxicol ; 50(6): 474-490, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32755358

RESUMO

Sarin is a highly toxic nerve agent that was developed for chemical warfare during World War II and is used in present conflicts. Immediate effects of acute sarin exposure are established; however, whether effects persist after initial signs have subsided is debated. The National Toxicology Program (NTP) conducted a systematic review to evaluate the evidence for long-term neurological effects following acute (<24 hour) exposure to sarin. The literature search and screening process identified 32 data sets within the 34 human studies and 47 data sets within the 51 animal studies (from 6837 potentially relevant references) that met the objective and the inclusion criteria. Four main health effect categories of neurological response were identified as having sufficient data to reach hazard conclusions: (1) cholinesterase levels; (2) visual and ocular effects; (3) effects on learning, memory, and intelligence; and (4) morphology and histopathology in nervous system tissues. NTP concluded that acute sarin exposure is known to be a neurological hazard to humans in the period following exposure up to 7 days and suspected to be a hazard week to years after exposure, given a lower level of evidence in later time periods. Effects included reduced cholinesterase, visual and ocular effects, impaired learning and memory, and altered nervous system morphology. Further mechanistic, targeted animal studies, translational research, and rapid research responses after human exposures may reduce uncertainties on long-term consequences of sarin.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Agentes Neurotóxicos , Sarina , Substâncias para a Guerra Química , Humanos , Tempo
10.
Toxicology ; 424: 152235, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31201879

RESUMO

Recent studies report widespread usage or exposure to a variety of chemicals with structural or functional similarity to bisphenol A (BPA), referred to as BPA analogues or derivatives. These have been detected in foodstuffs, house dust, environmental samples, human urine or blood, and consumer products. Compared to BPA, relatively little is known about potential toxicity of these compounds. This scoping review aimed to summarize the human, animal, and mechanistic toxicity data for 24 BPA analogues of emerging interest to research and regulatory communities. PubMed was searched from March 1, 2015 to January 5, 2019 and combined with the results obtained from literature searches conducted through March 23, 2015, in The National Toxicology Program's Research Report 4 (NTP RR-04), "Biological Activity of Bisphenol A (BPA) Structural Analogues and Functional Alternatives". Study details are presented in interactive displays using Tableau Public. In total, 5748 records were screened for inclusion. One hundred sixty seven studies were included from NTP RR-04 and 175 studies were included from the updated literature search through January 2019. In total, there are 22, 117, and 221 human epidemiological, experimental animal, or in vitro studies included. The most frequently studied BPA analogues are bisphenol S (BPS), bisphenol F (4,4-BPF), and bisphenol AF (BPAF). Notable changes in the literature since 2015 include the growing body of human epidemiological studies and in vivo studies conducted in zebrafish. Numerous new endpoints were also evaluated across all three evidence streams including diabetes, obesity, and oxidative stress. However, few studies have addressed endpoints such as neurodevelopmental outcomes or impacts on the developing mammary or prostate glands, which are known to be susceptible to disruption by BPA. Further, there remains a critical need for better exposure information in order to prioritize experimental studies. Moving forward, researchers should also ensure that full dose responses are performed for all main effects in order to support hazard and risk characterization efforts. The evidence gathered here suggests that hazard and risk characterizations should expand beyond BPA in order to consider BPA structural and functional analogues.


Assuntos
Compostos Benzidrílicos/química , Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/química , Disruptores Endócrinos/toxicidade , Fenóis/química , Fenóis/toxicidade , Animais , Humanos
11.
Environ Int ; 122: 168-184, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30473382

RESUMO

The objective of this paper is to explain how to apply, interpret, and present the results of a new instrument to assess the risk of bias (RoB) in non-randomized studies (NRS) dealing with effects of environmental exposures on health outcomes. This instrument is modeled on the Risk Of Bias In Non-randomized Studies of Interventions (ROBINS-I) instrument. The RoB instrument for NRS of exposures assesses RoB along a standardized comparison to a randomized target experiment, instead of the study-design directed RoB approach. We provide specific guidance for the integral steps of developing a research question and target experiment, distinguishing issues of indirectness from RoB, making individual-study judgments, and performing and interpreting sensitivity analyses for RoB judgments across a body of evidence. Also, we present an approach for integrating the RoB assessments within the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework to assess the certainty of the evidence in the systematic review. Finally, we guide the reader through an overall assessment to support the rating of all domains that determine the certainty of a body of evidence using the GRADE approach.


Assuntos
Viés , Exposição Ambiental/análise , Projetos de Pesquisa/normas , Medição de Risco/normas , Humanos , Distribuição Aleatória
12.
Environ Int ; 120: 382-387, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30125855

RESUMO

Assessing the risk of bias (RoB) of individual studies is a critical part in determining the certainty of a body of evidence from non-randomized studies (NRS) that evaluate potential health effects due to environmental exposures. The recently released RoB in NRS of Interventions (ROBINS-I) instrument has undergone careful development for health interventions. Using the fundamental design of ROBINS-I, which includes evaluating RoB against an ideal target trial, we explored developing a version of the instrument to evaluate RoB in exposure studies. During three sequential rounds of assessment, two or three raters (evaluators) independently applied ROBINS-I to studies from two systematic reviews and one case-study protocol that evaluated the relationship between environmental exposures and health outcomes. Feedback from raters, methodologists, and topic-specific experts informed important modifications to tailor the instrument to exposure studies. We identified the following areas of distinction for the modified instrument: terminology, formulation of the ideal target randomized experiment, guidance for cross-sectional studies and exposure assessment (both quality of measurement method and concern for potential exposure misclassification), and evaluation of issues related to study sensitivity. Using the target experiment approach significantly impacts the process for how environmental and occupational health studies are considered in the Grading of Recommendations Assessment, Development and Evaluation (GRADE) evidence-synthesis framework.


Assuntos
Viés , Exposição Ambiental , Estudos Transversais , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
13.
Environ Int ; 115: 48-69, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29549716

RESUMO

BACKGROUND: An increasing number of reports suggest early life exposures result in adverse effects in offspring who were never directly exposed; this phenomenon is termed "transgenerational inheritance." Given concern for public health implications for potential effects of exposures transmitted to subsequent generations, it is critical to determine how widespread and robust this phenomenon is and to identify the range of exposures and possible outcomes. OBJECTIVES: This scoping report examines the evidence for transgenerational inheritance associated with exposure to a wide range of stressors in humans and animals to identify areas of consistency, uncertainty, data gaps, and to evaluate general risk of bias issues for the transgenerational study design. METHODS: A protocol was developed to collect and categorize the literature into a systematic evidence map for transgenerational inheritance by health effects, exposures, and evidence streams following the Office of Health Assessment and Translation (OHAT) approach for conducting literature-based health assessments. RESULTS: A PubMed search yielded 63,758 unique records from which 257 relevant studies were identified and categorized into a systematic evidence map by evidence streams (46 human and 211 animal), broad health effect categories, and exposures. Data extracted from the individual studies are available in the Health Assessment Workspace Collaborative (HAWC) program. There are relatively few bodies of evidence where multiple studies evaluated the same exposure and the same or similar outcomes. Studies evaluated for risk of bias generally had multiple issues in design or conduct. CONCLUSIONS: The evidence mapping illustrated that risk of bias, few studies, and heterogeneity in exposures and endpoints examined present serious limitations to available bodies of evidence for assessing transgenerational effects. Targeted research is suggested to addressed inconsistencies and risk of bias issues identified, and thereby establish more robust bodies of evidence to critically assess transgenerational effects - particularly by adding data on exposure-outcome pairs where there is some evidence (i.e., reproductive, metabolic, and neurological effects).


Assuntos
Pesquisa Biomédica , Bases de Dados Factuais , Exposição Ambiental/análise , Animais , Pesquisa Biomédica/métodos , Pesquisa Biomédica/normas , Feminino , Humanos , Masculino , Exposição Materna , Exposição Paterna , Gravidez , Efeitos Tardios da Exposição Pré-Natal
14.
Environ Int ; 107: 163-172, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28738262

RESUMO

BACKGROUND: The objective of this evaluation is to understand the human health impacts of mountaintop removal (MTR) mining, the major method of coal mining in and around Central Appalachia. MTR mining impacts the air, water, and soil and raises concerns about potential adverse health effects in neighboring communities; exposures associated with MTR mining include particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), metals, hydrogen sulfide, and other recognized harmful substances. METHODS: A systematic review was conducted of published studies of MTR mining and community health, occupational studies of MTR mining, and any available animal and in vitro experimental studies investigating the effects of exposures to MTR-mining-related chemical mixtures. Six databases (Embase, PsycINFO, PubMed, Scopus, Toxline, and Web of Science) were searched with customized terms, and no restrictions on publication year or language, through October 27, 2016. The eligibility criteria included all human population studies and animal models of human health, direct and indirect measures of MTR-mining exposure, any health-related effect or change in physiological response, and any study design type. Risk of bias was assessed for observational and experimental studies using an approach developed by the National Toxicology Program (NTP) Office of Health Assessment and Translation (OHAT). To provide context for these health effects, a summary of the exposure literature is included that focuses on describing findings for outdoor air, indoor air, and drinking water. RESULTS: From a literature search capturing 3088 studies, 33 human studies (29 community, four occupational), four experimental studies (two in rat, one in vitro and in mice, one in C. elegans), and 58 MTR mining exposure studies were identified. A number of health findings were reported in observational human studies, including cardiopulmonary effects, mortality, and birth defects. However, concerns for risk of bias were identified, especially with respect to exposure characterization, accounting for confounding variables (such as socioeconomic status), and methods used to assess health outcomes. Typically, exposure was assessed by proximity of residence or hospital to coal mining or production level at the county level. In addition, assessing the consistency of findings was challenging because separate publications likely included overlapping case and comparison groups. For example, 11 studies of mortality were conducted with most reporting higher rates associated with coal mining, but many of these relied on the same national datasets and were unable to consider individual-level contributors to mortality such as poor socioeconomic status or smoking. Two studies of adult rats reported impaired microvascular and cardiac mitochondrial function after intratracheal exposure to PM from MTR-mining sites. Exposures associated with MTR mining included reports of PM levels that sometimes exceeded Environmental Protection Agency (EPA) standards; higher levels of dust, trace metals, hydrogen sulfide gas; and a report of increased public drinking water violations. DISCUSSION: This systematic review could not reach conclusions on community health effects of MTR mining because of the strong potential for bias in the current body of human literature. Improved characterization of exposures by future community health studies and further study of the effects of MTR mining chemical mixtures in experimental models will be critical to determining health risks of MTR mining to communities. Without such work, uncertainty will remain regarding the impact of these practices on the health of the people who breathe the air and drink the water affected by MTR mining.


Assuntos
Minas de Carvão/métodos , Animais , Exposição Ambiental , Poluição Ambiental , Humanos , Saúde Pública
15.
Birth Defects Res C Embryo Today ; 99(1): 1-13, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23723168

RESUMO

The incidence of asthma, a complex disease and significant public health problem, has been increasing over the last 30 years for unknown reasons. Changes in environmental exposures or lifestyle may be involved. In some cases asthma may originate in utero or in early life. Associations have been found between in utero exposures to several xenobiotics and increased risk of asthma. There is convincing evidence that maternal smoking and/or in utero and perinatal exposure to environmental tobacco smoke are associated with increased risk of asthma. Similar effects have been demonstrated in animal models of allergic asthma. Evidence also suggests that in utero and/or early-life exposures to various ambient air pollutants may increase the risk of asthma although supporting animal data are very limited. A few studies have suggested that in utero exposure to acetaminophen is associated with increased risk of asthma; however, animal data are lacking. Various vitamin deficiencies and supplements during pregnancy have been studied. In general, it appears that vitamins A, C, and E have protective effects and vitamins D and B may, in some instances, increase the risk, but the data are not conclusive. Some studies related to in utero exposures to polychlorinated biphenyls and bisphenol A and asthma risk are also reported. The underlying mechanisms for an association between xenobiotic exposures and asthma remain a matter of speculation. Genetic predisposition and epigenetic changes have been explored. The developing immune, respiratory, and nervous systems are potential targets. Oxidative stress and modulation of inflammation are thought to be involved.


Assuntos
Asma/etiologia , Exposição Ambiental , Efeitos Tardios da Exposição Pré-Natal , Poluição por Fumaça de Tabaco/efeitos adversos , Xenobióticos/efeitos adversos , Acetaminofen/efeitos adversos , Adulto , Animais , Asma/imunologia , Criança , Feminino , Humanos , Camundongos , Gravidez , Risco , Fumar/efeitos adversos
16.
Regul Toxicol Pharmacol ; 61(1): 73-81, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21699952

RESUMO

In 2005 we published an assessment of dose responses that satisfied a priori evaluative criteria for inclusion within the relational retrieval hormesis database (Calabrese and Blain, 2005). The database included information on study characteristics (e.g., biological model, gender, age and other relevant aspects, number of doses, dose distribution/range, quantitative features of the dose response, temporal features/repeat measures, and physical/chemical properties of the agents). The 2005 article covered information for about 5000 dose responses; the present article has been expanded to cover approximately 9000 dose responses. This assessment extends and strengthens the conclusion of the 2005 paper that the hormesis concept is broadly generalizable, being independent of biological model, endpoint measured and chemical class/physical agent. It also confirmed the definable quantitative features of hormetic dose responses in which the strong majority of dose responses display maximum stimulation less than twice that of the control group and a stimulatory width that is within approximately 10-20-fold of the estimated toxicological or pharmacological threshold. The remarkable consistency of the quantitative features of the hormetic dose response suggests that hormesis may provide an estimate of biological plasticity that is broadly generalized across plant, microbial and animal (invertebrate and vertebrate) models.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Determinação de Ponto Final/métodos , Substâncias Perigosas/toxicidade , Hormese , Animais , Grupos Controle , Bases de Dados Factuais , Relação Dose-Resposta a Droga , Feminino , Substâncias Perigosas/metabolismo , Substâncias Perigosas/farmacocinética , Humanos , Masculino , Camundongos , Modelos Animais , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Plantas , Ratos , Projetos de Pesquisa , Medição de Risco/métodos , Fatores de Tempo
17.
Environ Pollut ; 157(1): 42-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18790554

RESUMO

A database has been developed that demonstrates experimental evidence of hormesis. It includes information from a broad range of biological models, including plants, and information on study design, dose-response features, and physical/chemical properties of the agents. An assessment of plant hormetic dose responses is presented based on greater than 3000 plant endpoints. Plant hormetic dose responses were observed for numerous endpoints including disease incidence, reproductive indices, mutagenic endpoints, various metabolic parameters, developmental processes, and a range of growth indicators. Quantitative features of these dose responses typically display a maximum stimulatory response less than two-fold greater than controls and a width of the stimulatory response usually less than 10-fold in dose range. The database establishes that hormetic dose responses commonly occur in plants, are broadly generalizable, and have quantitative features similar to hormetic dose responses found for animals.


Assuntos
Agricultura , Bases de Dados Factuais , Relação Dose-Resposta a Droga , Plantas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Nível de Efeito Adverso não Observado , Desenvolvimento Vegetal , Poluentes do Solo/farmacologia , Estimulação Química
18.
Toxicol Appl Pharmacol ; 202(3): 289-301, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15667834

RESUMO

A relational retrieval database has been developed compiling toxicological studies assessing the occurrence of hormetic dose responses and their quantitative characteristics. This database permits an evaluation of these studies over numerous parameters, including study design and dose-response features and physical/chemical properties of the agents. The database contains approximately 5600 dose-response relationships satisfying evaluative criteria for hormesis across over approximately 900 agents from a broadly diversified spectrum of chemical classes and physical agents. The assessment reveals that hormetic dose-response relationships occur in males and females of numerous animal models in all principal age groups as well as across species displaying a broad range of differential susceptibilities to toxic agents. The biological models are extensive, including plants, viruses, bacteria, fungi, insects, fish, birds, rodents, and primates, including humans. The spectrum of endpoints displaying hormetic dose responses is also broad being inclusive of growth, longevity, numerous metabolic parameters, disease incidences (including cancer), various performance endpoints such as cognitive functions, immune responses among others. Quantitative features of the hormetic dose response reveal that the vast majority of cases display a maximum stimulatory response less than two-fold greater than the control while the width of the stimulatory response is typically less than 100-fold in dose range immediately contiguous with the toxicological NO(A)EL. The database also contains a quantitative evaluation component that differentiates among the various dose responses concerning the strength of the evidence supporting a hormetic conclusion based on study design features, magnitude of the stimulatory response, statistical significance, and reproducibility of findings.


Assuntos
Bases de Dados Factuais/estatística & dados numéricos , Relação Dose-Resposta a Droga , Toxicologia , Animais , Carcinógenos/toxicidade , Determinação de Ponto Final , Humanos , Modelos Biológicos , Plantas , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...